Ricci curvature for pointwise semi-slant warped products in non-Sasakian generalized Sasakian space forms and its applications
نویسندگان
چکیده
We find Ricci curvature bounds for pointwise semi-slant warped products submanifolds in non-Sasakian generalized Sasakian space forms this work, and analyze the equality case of inequality. The derived inequality is also used to develop a number applications.
منابع مشابه
Contact CR-warped product submanifolds in generalized Sasakian Space Forms
In [4] B. Y. Chen studied warped product CR-submanifolds in Kaehler manifolds. Afterward, I. Hasegawa and I. Mihai [5] obtained a sharp inequality for the squared norm of the second fundamental form for contact CR-warped products in Sasakian space form. Recently Alegre, Blair and Carriago [1] introduced generalized Sasakian space form. The aim of present paper is to study contact CR-warped prod...
متن کاملLegendrian Warped Product Submanifolds in Generalized Sasakian Space Forms
Recently, K. Matsumoto and I. Mihai established a sharp inequality for warped products isometrically immersed in Sasakian space forms. As applications, they obtained obstructions to minimal isometric immersions of warped products into Sasakian space forms. P. Alegre, D.E. Blair and A. Carriazo have introduced the notion of generalized Sasakian space form. In the present paper, we obtain a sharp...
متن کاملRICCI CURVATURE OF SUBMANIFOLDS OF A SASAKIAN SPACE FORM
Involving the Ricci curvature and the squared mean curvature, we obtain basic inequalities for different kind of submaniforlds of a Sasakian space form tangent to the structure vector field of the ambient manifold. Contrary to already known results, we find a different necessary and sufficient condition for the equality for Ricci curvature of C-totally real submanifolds of a Sasakian space form...
متن کاملOn Ricci Curvature of C-totally Real Submanifolds in Sasakian Space Forms
Let Mn be a Riemannian n-manifold. Denote by S(p) and Ric(p) the Ricci tensor and the maximum Ricci curvature on Mn, respectively. In this paper we prove that every C-totally real submanifolds of a Sasakian space form M̄2m+1(c) satisfies S ≤ ( (n−1)(c+3) 4 + n 2 4 H2)g, where H2 and g are the square mean curvature function and metric tensor on Mn, respectively. The equality holds identically if ...
متن کاملOn a Class of Generalized Sasakian-space-forms
The object of the present paper is to study quasi-conformally flat generalized Sasakian-space-forms. Also we study quasi-conformally semisymmetric generalized Sasakian-space-forms. As a consequence of the results, we obtain some important corollaries.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Hacettepe journal of mathematics and statistics
سال: 2022
ISSN: ['1303-5010']
DOI: https://doi.org/10.15672/hujms.1034883